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is required in the process of arranging O(1)---O(2) 
parallel to [001]. In all of these ways all the O atoms 
i~, SO4 must move in order to yield the 'edge-model' 
structure. 

The SO4 tetrahedra are supposed to be rigid 
during the phase-transition process and 0(2) is more 
mobile than O(1) as discussed in the present work. 
The small anharmonic parameters of O(1) suggest 
that O(1) does not move drastically during the tran- 
sition. The parameter c233 of 0(2) is correlated to 
rotation around a line parallel to [100] through a 
point lying on the same side as S with respect to 
0(2). Since the u2 axis of 0(2) is almost parallel to 
the line between 0(2) and the midpoint of O(1)--  
O(1)', and O(1) atoms are not expected to move 
drastically, the positive c233 value of 0(2) is thought 
to be correlated to rotation of the SO4 tetrahedron 
around the O(1)---O(1)' edge. The upward and 
downward rotations with respect to the z direction 
may occur with equal probability, since there are two 
negative potential regions at both sides of the O- -S  
bond in Fig. 7, which are equivalent to each other 
within the present approximation. Thus, the mirror 
plane at z = 41, which is required by the space group 
of the high-temperature form, is preserved. This 
phase-transition mechanism does not contradict evi- 
dence obtained in the study of the high-temperature 
phase and supports the structure of phase I reported 
in the previous paper (Naruse et al., 1985). 
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Abstract 

A computer algorithm has been developed for the 
characterization of voids in all classes of crystalline 
materials. From the known atomic coordinates, the 
centres and radii of all voids can be determined. A 
given void radius corresponds to the radius of the 
largest sphere which can be located at its centre, 
without overlapping of that void sphere with coordi- 
nating atoms or ions. The methodology is applied in 
particular to oxide ceramic systems. Since, in these 
systems, a useful void is one into which a metal 
cation may be inserted, it must be coordinated solely 
by oxygen ions. Three polymorphic oxides are con- 
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sidered in detail: TiO2, ZrO2 and WO3. Dopant ions 
are identified that are likely to extend the ranges of 
temperature and pressure over which the individual 
polymorphs are stabilized. The contribution of the 
methodology in establishing relationships between 
chemical composition and crystal structure is also 
assessed. 

Introduction 

In most structural studies of crystalline materials, 
whether metallic, ceramic, polymeric or molecular in 
nature, attention is focused on the positions and sizes 
of atoms and ions, with little, or no attention being 

© 1991 International Union of Crystallography 
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paid to the unoccupied space between them. This is 
not surprising, since the determination of atomic and 
ionic positions, per se, is the objective of much 
experimental crystallographic work. However, when 
a comparison between different structures is sought, 
for example in an attempt to rationalize variations in 
physicochemical properties between one material and 
another, the characterization of this unoccupied 
space is potentially of great importance. A novel 
computational method for doing this is presented 
here, together with a discussion of its applications to 
ceramic systems. 

The importance of crystalline free space has 
already been recognized by workers in areas such as 
shape-selective catalysis and organic solid-state 
chemistry. For example, many of the catalytic 
properties of zeolites can be understood in terms of 
the sizes and connectivity of the pores in the zeolitic 
framework (Ramdas, Thomas, Betteridge, Cheetham 
& Davies, 1984). Similarly, the degree of steric con- 
trol exerted in organic solid-state reactions depends 
critically upon the degree of intermolecular free 
space available at reaction centres. It is also con- 
ceivable that the transport of molecules to and from 
reaction centres may take place by means of inter- 
connected pores of molecular dimensions in certain 
molecular crystals (Gavezzotti & Simonetta, 1987). 

Gavezzotti (1983) has taken steps to quantify the 
unoccupied space in crystals, by means of an com- 
puter algorithm. This takes a three-dimensional grid 
of test points, each point lying either inside an 
atomic/ionic sphere, or in the space between atoms 
or ions (henceforth described as 'ions', to reflect the 
emphasis on ceramic systems). Thus the evaluation 
of a bulk geometic packing density is permitted, 
together with a monitoring of local variations in 
packing density. The algorithm described in this 
paper is a development of this procedure. Starting 
from a three-dimensional grid of test points, each 
point found to lie in the space between ions is used 
as the starting point of a refinement procedure, in 
which the maximum spherical void radius in the 
vicinity of that test point is determined. At the end of 
the procedure, a list of non-overlapping voids is 
given, each void being characterized by the coordi- 
nates of its centre and a radius. 

Although this information is relevant to a wide 
range of chemical problems, its application to metal 
oxide (ceramic) systems is emphasized in this article. 
Just as a consideration of free space permits a ration- 
alization of correlations between chemical composi- 
tion and crystal structure in certain classes of 
molecular crystals (Thomas, Ramdas & Thomas, 
1985; Thomas & Thomas, 1986), it can also provide 
insight into relationships between chemical composi- 
tion and crystal structure in ceramic systems. Atten- 
tion is also paid to polymorphism, and to the idea of 

phase stabilization, where the range of temperature 
and pressure over which a particular type of crystal 
structure is stable can be extended by doping with 
ions of varying size and valence. 

Computational method 

Characterization of the voids in a given crystal 
structure is carried out by means of an interactive 
FORTRAN77 computer program written specifically 
for this purpose, which is run on an Apollo DN3000 
workstation at the University of Leeds (Thomas, 
1990). The following sequence of operations is per- 
formed. 

Stage 1 

The coordinates of all ions within the unit cell are 
calculated, together with the coordinates of all ions 
lying within an adjustable range outside the unit-cell 
boundaries. This range must be sufficiently large for 
the coordination environments of all ions within the 
unit cell to be complete. 

Stage 2 

A three-dimensional grid of test points is set up, 
covering one unit cell. The spacing of these test 
points is governed boy a parameter GRSEP, which 
has been set to 0.2 A for all the calculations here. 
The number of equally spaced test points is equal to 
a/GRSEP parallel to the x axis of the unit cell, 
b/GRSEP parallel to the y axis and c/GRSEP paral- 
lel to the z axis of the cell, where a, b, and c 
correspond to the lengths (/k) of the three unit-cell 
axes. 

Each test point is monitored to see whether it lies 
within the spherical volume of an ion, or in the space 
between ions. The results of this test depend on the 
set of ionic radii chosen, the choice made here being 
the radii of Shannon (1976). This parametrization 
accommodates explicitly the dependence of cationic 
radii upon coordination number, as well as the 
smaller variation in oxygen ionic radius between 1.35 
and 1.42/k, as the number of cations coordinating an 
oxygen ion varies between 2 and 8. 

If a test point lies in the space between ionic 
spheres, then the radius, TPRAD, of that point is 
given by the distance from the test point to the 
nearest ionic surface. A by-product of this stage is 
the calculation of the fraction of crystal space occu- 
pied by ions,.f, cc, given by: 

focc : Nintra/(Nintra + Ninter). ( l )  

In this equation, Nintr a is the total number of test 
points lying within ionic spheres and Ninte r the total 
number of points lying between ionic spheres. Clearly 
the total number of test points is given by (g in t r  a ']- 
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N~,,ter). The accuracy of the value off,ccobtained will polyhedra (Thomas, 1989, 1991). A void volume 
increase as the fineness of the grid of test points defined thus has the advantage of being independent 
increases, i.e. as the value of GRSEP is diminished, of the values of ionic radii adopted. 

Stage 3 

At the end of stage 2, a list of test points lying 
between ionic spheres is contained in a temporary 
file, together with the value of TPRAD for each test 
point. Those points with TPRAD within a range 
GRSEP of the maximum value of TPRAD are used 
as starting points in a refinement, in which the 
maximum void radii are evaluated. The refinement 
algorithm proceeds as shown in Fig. 1, where R 
corresponds to a variable void radius, which is evalu- 
ated at different positions. At the initial test point, R 
= TPRAD. ITR, or grad R, is the vector giving the 
direction in which the void radius, R, increases 
fastest with displacement: 

OR OR OR 
= - -  - - + - - .  (2 )  VR Ox + Oy Oz 

The following approximation for VR is made in the 
program: 

R(x + Ax) - R(x - ax)  
V R =  

2Ax 

RO, + ,a),)- R ~ , -  ,ay) + 
2Ay 

R(z + Az) - R(z - az)  
+ 2Az (3) 

In all calculations here, Ax, Ay and Az have been set 
to 0.02 ,~ in the iterative part of the refinement, and 
equal to 0.002A in the final evaluation of VR 
(Fig. l). 

Stage 4 

A test is now carried out for overlapping voids. 
Each void is regarded as a sphere of radius equal to 
its optimized radius, Rn,a~ (Fig. 1), and the test 
simply monitors overlapping void spheres. In the 
case of an overlap occurring, the larger of the two 
voids is retained, with the smaller one disregarded at 
this stage. The ionic environments of each void are 
evaluated and printed out for inspection. In the case 
of an ionic oxide, useful voids (i.e. those into which 
cations may be inserted) correspond to those coordi- 
nated only by oxygen ions. If required, polyhedral 
void volumes may be calculated, corresponding to 
the volume enclosed by the oxygen ions coordinating 
the centre of the void (i,e. forming a 'coordination 
polyhedron' around the void). The algorithm 
required for this has been described previously, in a 
calculation of the volumes of cation coordination 

Stage 5 

The initial scan has identified and characterized all 
the larger spherical voids in the structure. It may be 
necessary, however, to identify smaller voids which 
have been disregarded because they overlap with 
larger ones. In order to do this, second and subse- 
quent scans are possible, in which voids already 
identified are regarded as being occupied by spherical 
ions of radius equal to the appropriate void radius, 
Rf~,a~. This ensures that these voids will not be 
detected as such in subsequent scans. Further scans 
start at stage 1 above, and may be carried out as 
many times as necessary. 

Stage 6 

The void positions are identified to _ 0.000l ,~ by 
the above procedure. Further precision is possible by 
the application of equation (3) to the void centres 
obtained, with successively smaller values of Ax, Ay, 
Az, and with smaller translational increments in the 
iterative procedure shown in Fig. 1. 

Set current test point ] 
to unrefined test point / 

/ 

Evaluate grad R at current test point (equation (3)) 

Shift current test point in increments of 0.001 /~ 
to a position lying along grad R, the magnitude of 
the displacement corresponding to the distance over 
which R continues to increase. This is the new 

current test point. 

] It ~hifl nnn-TOrnOl yes 

i 

I Evaluate grad R at current test point (equation (3)) [ 
m 

I I 

Proceed along direction of grad R, in very small 
increments of 0.0001 ,~, to the point at which R 
no longer increases. This point is taken as the 

refined void centre. 

Print out, and store in a file, refined coordinates 
and radius of the void R final 

F i g .  ! .  S c h e m a t i c  d i a g r a m  o f  t h e  a l g o r i t h m  t o  r e f i n e  t h e  v o i d  

radius of a test point. Input to the algorithm consists of the 
coordinates of the test point and its void radius, TPRAD. 
Output comprises modified coordinates and a refined radius, 
elinal .  
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Table 1. Crystallographic data of the structures under examination 

Formula  Phase Space group Space-group No. Z V~ (/k 3) No Vioo (A, ~) f~°~ E E ~ T (K) Ref. 

TiO2 Anatase 14,/amd 141 4 136.27 6 9.453 0.277 12 4 295 (1) 
Brookite Phca 61 8 256.84 6 9.758 0.304 12 3 298 (2) 
Rutile P4Jmmm 136 2 62-42 6 9.904 0.317 i 2 2 295 (1) 
TiO2(lI) Pbcn 60 4 122.33 6 9.905 0-324 12 2 295 (3) 

ZrO2 Monoclinic P2~/c 14 4 140-90 7 14.499 0.412 14 7 295 (4) 
Tetragonal P4Jnmc 137 2 69.83 8 18.969 0.500 14 12 1523 (5) 
Cubic Fm3m 225 4 130.32 8 16.290 0"500 12 12 >2640 (6) 

WO~ Triclinic PI 2 8 421.92 6 9.293* 0" 176 12 0 295 (7) 
Monoclinic P2,/n 14+ + 8 423.68 6 9"299t 0.176 12 0 295 (8) 
Orthorhombic Pnma 62 8 430.90 6 8'892t 0.167 12 0 873 (9) 
Tetragonal (1) P4/nrnm 129 2 107.91 6 8.992 0.167 12 0 1043 (10) 
Tetragonal (2) P4/nmm 129 2 108"95 6 9'079 0-167 12 0 1223 (10) 

References: (1) Burdett  et al. (1987); (2) Meagher  & Lager (1979); (3) Grey  et al. (1988); (4) Howard  et al. (1988); (5) Teufer  (1962); 
(6) W y c k o f f  (1964); (7) Diehl et al. (1978); (8) Loops t ra  & Rietveld (1969); (9) Salje (1977); (10) Kehl et al. (1952). 

* Mean value: 4 pairs o f  WO6 oc tahedra  related by inversion symmetry  in unit cell. 
t Mean value: 2 sets o f  symmetry-rela ted WO6 oc tahedra  in unit cell. 
++ Non-s tandard  setting for space group No.  14. 

Table 2. Coordinates and point symmetries of primary voids in the structures 

W y c k o f f  Centres o f  coordinates  
nota t ion  o f  oxygen ions 

and point  coordinat ing voids 
Formula  Phase Space-group No. foc~ symmetry  No x y z x y z 

TiO, Anatase 141 0-64 16(h)* m 4 0-0 0.6572t 0.0373t 0-0 0.625t 0.0416t 
Brookite 61 0-68 8(c) I 4 0.5510 0.9473 0.0231 0.5555 0.9400 0.0367 
Rutile 136 0.71 4(d) 74 4 0.0 0.5 0.25 0.0 0.5 0-25 
TiO2(ll) 60 0.72 4(c) 2 6 0.0 0-6167 0.25 0-0 0.6314 0.25 

ZrO2 Monoclinic 14 0.69 4(e) I 5 0.8791 0'0259 0.4843 0.9109 0.0486 0"5042 
Tetragonal 137 0.69 2(b) 42m 8 0-0 0.0 0.0 0.0 0.0 0-5 
Cubic 225 0.73 4(b) m3m 8 0-5 0.5 0.5 0.5 0.5 0-5 

Coordinates  of  voids 
given by 

computa t iona l  method  

WO~ Triclinic 2 0'60 2(i) 1 12 0-0335 0.7220 0'4670 0.0001 0.7501 0.4982 
Monoclinic 14 + 0.60 4(e) 1 12 0.0200 0.2415 0.4701 - 0-0010 0.25 0.5028 
Orthorhombic 62 0-59 8(d) 1 12 0-2648 0.0090 0.2502 0.2518 0.0 0-2503 
Tetragonal (I) 129 0.58 2(b) 42m 12 0.0 0.0 0.5 0.0 0.0 0.5 
Tetragonal (ll) 129 0.57 2(b) 4~n 12 0.0 0.0 0.5 0.0 0.0 0"5 

* Only half  o f  the 16 pr imary  voids in anatase can be occupied simultaneously,  owing to the overlapping o f  pairs of  voids. 
t This value refers to second setting o f  space group 141 (I4,/amd),  with origin at 2/m. 
~. Data  refer to a special setting o f  space group 14, P2,/n. 

Results 

Crystallographic data of the three polymorphic com- 
pounds, TiO2, ZrO2 and WO3, are given in Table 1. 
The column headed Vu contains the unit-cell 
volumes, No is the number of oxygen ions coordinat- 
ing each cation, and Vion represents the volume 
enclosed by the cation coordination polyhedra in 
each structure (Thomas, 1989, 1991). The vertices of 
these polyhedra correspond to the oxygen ions coor- 
dinating a given cation, which lies inside the coordi- 
nation polyhedron. The parameter fenc gives the 
fraction of space enclosed by the cation coordination 
polyhedra (Thomas, 1991), which is given here by: 

z 

f~c = ~ Vion.i/Vu. (4) 
i = 1  

The column headed E gives the number of edges in 
each coordination polyhedron, and the E s column 
gives the number of these edges which are shared 
with adjacent polyhedra. A variation in E s is 
observed between the polymorphs of TiO2. The 
column headed T gives the temperature at which the 
structural data have been collected. These are known 
precisely for all the structures except cubic ZrO2, for 
which no particular temperature has been quoted. In 
view of the high temperatures required to stabilize 
the tetragonal and cubic polymorphs of zirconia, 
recent crystallographic work has utilized dopant 
ions, in order to stabilize the tetragonal and cubic 
polymorphs at room temperature (Howard, Hill & 
Reichert, 1988). The compositions used were 
gr0.935Yo.o65Ol.968, which is tetragonal, and 
Zro 875Mg0.,250,.875, which is cubic at room tempera- 
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Formula 
TiO2 

ZrO2 

WO 

Table 3. Radii and polyhedral volumes of primary voids in the structures 

Phase Rv,,,d (A) (Rvo,d) (A) (R~,~,a) (A) Vv,,,d (A 3) V~,,,d/V,o, 
Anatase 0-614 0-614 0.608 2.839 0.300 
Brookite 0.545 0.545 0.542 2.703 0.277 
Rutile 0.460 0.460 0.460 2.726 0.275 
TiO2(II) 0.600 0.600 0-597 10-484 1.058 

Monoclinic 0-692 0.706 0.693 6.754 0.471 
Tetragonal 0.685 0-884 0.884 18.969 1.000 
Cubic 0.815 0-815 0.815 16.290 1-000 

Triclinic 0.998 1-342 1.319 43.052 4.633 
Monoclinic 1.068 1.341 1.329 43.923 4-723 
Orthorhombic 1.245 1.329 1.327 44.881 5.000 
Tetragonal (1) 1.285 1.327 1.327 44.961 5.000 
Tetragonal (II) 1.296 1.335 1.335 45.397 5.000 

Table 4. Point symmetries, coordinates and radii of secondary voids 

Symmetry-group 
Formula Phase No.  

TiO2 Anatase 141 
Brookite 61 
Rutile 136 
TiO2(ll) 60 

ZrO2 Monoclinic 14 
Tetragonal 137 
Cubic 225 

WO~ Triclinic 2 
Monoclinic 14t 
Orthorhombic 62 
Yetragonal (I) 129 
Tetragonal (II) 129 

Wyckoff 
notation 

and point 
symmetry 

16(j') 2 
8(c) 1 
8(i) m 
8(d) I 

4(e) 1 

Coordinates 
N o  x y z R,~o,d (A) (Rvo,d) (A) 

4 0.1177" 0.0" 0"0" 0.541 0.541 
4 0.3398 0.3421 0.3442 0.524 0.524 
4 0.0773 0.6207 0.0 0.428 0.428 
4 0.1123 0.6233 0.5889 0.380 0.383 

5 0.3708 0.4880 0.2240 0.568 0.603 
No useful secondary voids 
No useful secondary voids 

2(i) I 12 0.0310 0.2248 0.9661 0.976 1.350 
4(e) 1 12 0.5322 0.2473 0.4886 1.031 1.318 

No useful secondary voids 
No useful secondary voids 
No useful secondary voids 

* This value refers t o  second setting of space group 141 (14~/amd), with origin at 2/m. 
~" Data refer to a special setting of space group 14, P2dn. 

ture. However, since these relatively large dopant 
levels are likely to perturb the structures of  the pure 
zirconia polymorphs, they have not been considered 
in the present study. Data obtained in earlier work 
on undoped ZrO2 have been used instead. 

Table 2 gives values of jo~ [equation (1)] and the 
coordinates of  the primary voids in each of the 
structures. A primary void is one which has the 
maximum radius (see Table 3) for that structure, and 
a secondary void one which has a radius smaller than 
the maximum (see Table 4). The Wyckoff  notation 
and point symmetries of the voids are inferred from 
their coordinates, with the assistance of International 
Tables.Jor X-ray Crystallography (1952, Vol. I). Two 
sets of  coordinates are quoted for each primary void. 
The first of these corresponds to the void centre, as 
determined from the above computational method, 
and the second is given by the centre of  coordinates 
of the oxygen ions coordinating each void. They are 
not necessarily identical to each other. Note that all 
the primary voids identified in these structures are 

coordinated by oxygen ions, and not by cations. This 
is to be expected from the relative numbers of  
cations and oxygen ions, a factor on which the 
analysis in terms of cation coordination polyhedra 
ultimately depends. Further, any potential cationic 
site (or ~useful void') in an ionic oxide must neces- 
sarily be coordinated solely by oxygen ions. 

The data in Table 3 refer to the radii and volumes 
of primary voids. The column headed R,.o,d gives the 
maximum radii of the cations which may be inserted 
in the appropriate voids without overlapping of 
cationic and oxygen ionic spheres. These values are 
generated from the above computational procedure. 
The value of (R,.oid) for a given structure corresponds 
to the average distance from the void centre to the 
surfaces of the oxygen ions coordinating the void. In 
general, (R,.o~d) is greater than R,.oia. The quantities in 
the column headed (~,~,,~a) represent the correspond- 
ing centre-surface average distances when the centres 
of coordinates of  the oxygen ions (see Table 2) are 
taken as the void centres. It is observed that (R,C,~,a) is 
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less than (Rvoid). Note that the quantity </{void) is 
appropriate for matching cationic radii to void sizes, 
since the cationic radii of Shannon (1976) are 
averages of the cation-anion surface distances typi- 
cally found within the coordination shells of cations. 

Values of Vvoid correspond to the polyhedral 
volumes of the primary voids, i.e. each void centre is 
regarded as lying within a coordination polyhedron 
with vertices given by coordinating oxygen ions. 
These volumes have been calculated with a separate 
computer program (Thomas, 1991). The right-hand 
column of Table 3 gives the ratio of primary void 
polyhedral volume to cationic polyhedral volume, 
Vio,, for each of the structures. Ratios of polyhedral 
volumes are discriminating structural parameters, 
which are useful for a discussion of chemical 
composition-structure and structuro-property rela- 
tionships in oxide ceramics (Thomas, 1989, 1991). 

Fig. 2 illustrates the primary voids in four of the 
structures, rutile, monoclinic zirconia, cubic zirconia 
and the lower temperature tet.ragonal polymorph of 

WO3. They are represented as void coordination 
polyhedra, with the vertices corresponding to oxygen 
ions. 

The data in Table 4 refer to the coordinates a n d  
radii of useful secondary voids, i.e. those of smaller 
radius, into which cations may be inserted. Note that 
there are no useful secondary voids to be found in 
several structures. Thus once all the primary voids 
have been filled, there are no remaining voids which 
are coordinated solely by oxygen ions. Consequently, 
further insertion, into non-primary voids, is 
inhibited. 

Applications of the methodology to oxide ceramic 
systems 

The above analysis has characterized the voids in 
three ceramic systems, TiO2, ZrO2 and WO3. It now 
remains to show how this information is useful in 
understanding the polymorphism exhibited by these 
systems, and how it may be exploited to control the 

(a) (b) 

(c) (d) 
Fig. 2. Coordination polyhedra of the primary voids in four of the systems under study. One unit cell is shown in clinographic 

projection. (a) TiO2 (rutile); (b) ZrO2 (monoclinic); (c) ZrO2 (cubic); (d) WOa (tetragonal). 
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ranges of temperature and pressure over which the 
different polymorphs are stable. The methodology is 
also a useful tool for building up an understanding 
of relationships between chemical composition and 
crystal structure in metal oxides. 

Stabil ization o f  po lymorphs  over ex tended  temperature 
and pressure ranges 

Much of ceramics science is concerned with identi- 
fying the phases present in polycrystalline materials, 
and with the preparative conditions conducive to 
obtaining a desirable combination of phases. The use 
of 'phase diagrams' is widespread in this context, as 
they permit a rapid assessment of the variation in 
phase stability with temperature (and pressure), as a 
function of overall chemical composition, typically 
within a binary or a ternary system. Although the 
use of phase diagrams is invaluable for developing an 
overall picture of a particular system, it does not 
necessarily lead to an intuitive understanding of why 
a particular composition is to be found in one phase, 
in preference to another. In contrast, the present 
methodology provides a starting point for the devel- 
opment of an understanding of this kind. 

The basic idea of phase stabilization in oxide 
ceramic systems is straightforward: a given poly- 
morphic metal oxide, of composition MxOy,  will be 
stabilized in a particular polymorph over a limited 
range of temperature and pressure, outside which it 
will exist in a different polymorph, or phase. How- 
ever, the range of stabilization over temperature and 
pressure of a given polymorph can be extended by 
'alloying' with other suitable metal ions. For 
example, in the zirconia system, tetragonal ZrO2 is 
normally stable at temperatures higher than ca 
1450 K, and cubic ZrO2 is stabilized only at even 
higher temperatures, greater than ca 2640 K. 
However, doping with y3~, for example, stabilizes 
the tetragonal phase at room temperature, and 
doping with Mg 2+ stabilizes the cubic phase at room 
temperature (Howard et al., 1988). In the absence of 
these dopants, the monoclinic phase of ZrO2, 
baddeleyite, would be more stable at this tempera- 
ture. Incidentally, a knowledge of the phase 
behaviour of ZrO2 is of considerable technological 
interest, since zirconia-based ceramics find wide- 
spread application in engineering and electrical com- 
ponents. 

In rationalizing which dopant ions are most likely 
to stabilize a particular phase, attention should be 
focused on the sizes and valences of the dopant ions, 
together with the sizes of the sites they may enter in 
the host oxide structure. The mode of dopant substi- 
tution to which the void methodology relates is 
necessarily one in which the structure of the phase 
being stabilized is conserved, i.e. the pattern of sub- 

stitution is such that no oxygen ion vacancies are 
introduced as a result of the doping. The presence of 
such vacancies would be associated with local struc- 
tural perturbations, so that the calculated void sizes 
would be inapplicable. 

Thus yttria-stabilized zirconia, as conventionally 
prepared, is not structure conserving. The com- 
position studied by Howard et al. (1988), 
Zro935Y0.065Ol.968, contains oxygen vacancies in the 
parent ZrO2 structure, as does the composition 
analysed by Morikawa et al. (1988), Zro.gaYo.o6OI.97 , 

in an EXAFS study. Similarly, the stabilized cubic 
phase studied by Howard et al., Zro.svsMgo.125Oi.875, 
contains oxygen vacancies. Clearly, a structure- 
conserving mode of substitution requires co-doping 
of two or more ions. For example in the ZrO2 
system, one dopant ion would replace a Z r  4+ ion, 
and the other(s) would occupy voids in the ZrO2 
structure. By ensuring that the sum of the valences of 
the doping ions were equal to four, the valence of the 
Z r  44 ion being replaced, no oxygen ion vacancies 
would be created. 

An examination of ionic radii (Shannon, 1976) 
reveals that the following common ions of lower 
valence, in eightfold coordination, have radii closest 
to that of Zr 4+ (0.84,~): Cr2~(LS) 0.83;* Cu 2+ 
0-83;* Ag 3+ 0"86;* Sc 3+ 0"87,~. [Each ionic radius 
marked wtih an asterisk has been derived from the 
sixfold coordinated radius for that ion (Thomas, 
1991).] A similar consideration of sevenfold coordi- 
nated radii shows that Mg 2+, Zn 2+ and Co 2+ are 
also similar in size to the Z r  4+ ion. Thus these ions 
are likely to be suitable replacements for Z r  4 + ions in 
all three polymorphs of ZrO2. However, the varia- 
tion in values of (Rvoi,~) (see Table 3) between the 
different polymorphs of ZrO2 implies that the vari- 
ous phases are likely to exhibit different preferences 
towards the co-doping ions which may enter the 
voids. 

Monoclinic ZrO2, with a value of (Rvo~O) equal to 
0.706 A, can accommodate most easily the following 
ions of valence less than four in its fivefold coordi- 
nated voids: Cu t 0-70;* Fe2+(HS) 0.71;* Li + 0.69;* 
Ag 3÷ 0.68;* Zn 2+ 0.68A. Thus a composition 
Zr~ _x(Cu 2 +)x[Fe 2 +]gO2 would be expected to adopt 
the monoclinic ZrO2 structure, as would 
Zrl-x(Sc3+)x[Cu+]x/2[Zn2+]x/402, for example. In 
these formulae, round brackets represent ions 
occupying former Z r  4+ sites, and square brackets 
indicate ions occupying void sites. 

Note that the assumption is being made that con- 
tiguous Zr 4+ and void sites may be simultaneously 
occupied. The insight gained from an earlier detailed 
study of metal oxide structures (Thomas, 1991) sug- 
gests that this is allowed, provided that the criterion 
of overall charge neutrality is satisfied. However, the 
method cannot predict an upper limit to the degree 
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of allowed dopant substitution, represented by x: this 
must be determined by experiment. 

A consideration of the tetragonal and cubic phases 
of ZrO2 reveals that the sizes of the void sites are 
identical to those of the Z r  4+ sites. Consequently, 
those ions of lower valence most able to enter the 
void sites will have radii close to that of the Z r  4 ÷ ion 
in eightfold coordination (0.84 A), as quoted above 
in connection with monoclinic zirconia. Thus com- 
positions such as Zr,_,.(Cu 2'),[Cu2+]xO2 and 
Zr~ _x(Sc 3+)x[Sc 3+ ],-302 are likely to be stabilized in 
the tetragonal or cubic polymorphs, rather than in 
the monoclinic phase. In searching for ions most 
likely to cause ZrO2 to be stabilized in the cubic, 
rather than the tetragonal phase, it should be noted 
that 5(Rv°id)A i n  is 0.884 A in the tetragonal phase but 
0.81 the cubic phase. Given that the ionic 
radius of Z r  4~ is quoted as 0.84/k, it would seem 
that ions slightly smaller than Z r  4÷ [e.g. Cr2+(LS), 
Cu 2+] would be more easily stabilized in the cubic 
phase, and ions slightly larger than Zr 4÷ (e.g. Ag 3' , 
Sc 3 ' )  would be more easily stabilized in the tetra- 
gonal phase. 

The significance of some ions being prefentially 
accommodated in the voids of one phase, rather than 
in another, is that their presence as dopants will 
increase the likelihood of that particular phase being 
stabilized over an extended temperature range. This 
stabilization will have two components: (i) the inter- 
nal energy of the stabilized phase will be reduced 
relative to that of the other phases; (ii) the occupa- 
tion of void sites in the stabilized phase will inhibit 
kinetically transitions to other phases. This kinetic 
inhibition is particularly important in phase transi- 
tions involving larger ionic displacements, e.g. the 
martensitic transition between monoclinic and 
tetragonal ZrO2. 

The four polymorphs of TiO2 have values of 
{Rvoid) lying between 0.460 and 0.614A, thereby 
giving rise to considerable selectivity of the 
different polymorphs towards the ions which can be 
accommodated in their void sites. The Ti 4+ ion is in 
sixfold coordination in all four phases, and, with a 
radius of 0.605 A, it has the following ions of lower 
valence, which are closest in radius: Co 3 + (HS) 0.61; 
FeZ+(LS) 0.61; Ni3+(HS) 0.60; Cr 3+ 0.615; Ga 3+ 
0.62 A. 

Ions of valence less than 4 closest in size to the 
fourfold coordinated voids in anatase ({Rvoid) = 
0.614 A) are: Cr 2+ (HS) 0.61;* In 3~ 0-61;* Cu ÷ 0"60; 
Pt 2~ 0-60; Zn 2+ 0"60 A. 

Ions of valence less than 4 closest in size to the 
fourfold coordinated voids in brookite ((Rvo~a)= 
0"545 A) are: Nb 3+ 0.55;* Ta 3+ 0.55;* Ni 2+ 0.55; 
Cr2+(LS) 0"55;* Ge 2+ 0.55 A.* 

Ions of valence less than 4 closest in size to the 
fourfold coordinated voids in rutile ({R~oia) = 

0.460,~) are: Co3+(HS) 0.46;* Fe2+(LS) 0.46;* 
Ni 3 + (HS) 0.45;* Cr 3 + 0-47;* Ga 3 + 0.47 A. 

Ions of valence less than 4 closest in size to the 
sixfold coordinated voids in TiO2(lI) ((Rvoid) = 
0-600A0 are: Ni3+(HS) 0-60; Co3+(HS) 0.61; 
Fe2+(LS) 0.61; Cr 3÷ 0.615; Ga 3+ 0-62 A. 

Thus, for example, if the Fe 2 ~(LS) ion is substi- 
tuted for the Ti 4÷ ion in each of four polymorphs, 
Ti, ~(Fe2+)x[Zn 2 ~]xO2 is likely to be stabilized in the 
anatase phase, T i l  x(FeZ+)x[Ni 2+]xO2 in the 
brookite phase, and Ti,_x(Fe 2 ÷)x[Ga 3 +]2x/302 in 
either the rutile or the TiO2(II) phase. The 
uncertainty over whether the last composition pro- 
motes stabilization of the rutile or the TiO2(lI) phase 
is due to the same ions being closest in size to the 
voids in both polymorphs. [The variation in the ionic 
radius quoted for a given ion is due merely to the 
voids,in rutile being fourfold coordinated, whereas 
those in TiO2(II) are sixfold coordinated.] 

In searching for a differential stabilization effect 
between these two phases, it is pertinent to remark 
that values of (Rvoi,~) for secondary voids differ sig- 
nificantly between the two phases (see Table 4). 
Rutile, with (Rvo~a) equal to 0.428 A, has the 
following ions of valence less than 4 closest in size to 
its secondary voids: Ni 3' (LS) 0-42 A,;* Fe3+(LS) 
0.42/k;* As 3+ 0.44/k;* Mn3+(LS) 0-44/~.* By 
comparison, TiO2(II), with (Rvoia) equal to 0.383/k, 
has just the A13+ ion, with a radius of 0.39A,, 
sufficiently close in size. Thus a composition 
Ti~ x(Fe 2+)x[Al 3 + ]2x/302 would be expected to crys- 
tallize in the TiO2(II), rather than in the rutile 
structure. 

The WO3 polymorphic system does not lend itself 
to clear prediction of phase-stabilization effects, 
since the extent of the variation in void sizes between 
the different polymorphs is limited. This is not sur- 
prising, since the topologies of the ions do not 
change in the different phases. There are simply 
changes in symmetry. Values of (Rvo~a) for the pri- 
mary voids in WO3 vary between 1.327 and 1-342 A, 
so that the following ions are most suitable for 
insertion in void sites: Ca 2+ 1.34; Ce 3+ 1.34; Dy 2+ 
1.35;* La 3+ 1.36; Cd 2÷ 1.31 A. Those ions closest in 
size to the sixfold-coordinated W 6+ ion (0.60 A) are: 
Ni 3+, Rh 4+, Sb s+, Tc 5+ (0"60 ~); Yi 4 ~-, C03+(HS), 
Fe 2 ~ (LS), Mo s+ (0-61 tk). Thus insertion of Ca 2+ or 
Ce 3+ ions into the primary voids may favour stabili- 
zation of the triclinic and monoclinic polymorphs, 
which have slightly larger values of (Rvoid). Conver- 
sely, insertion of Cd 2 ÷ ions into primary voids may 
stabilize the orthorhombic and tetragonal 
polymorphs, which have slightly smaller void sizes. 
However, the secondary voids in monoclinic WO3, 
with (R~oia) equal to 1.318 A, may accommodate the 
Cd 2' ions preferentially. Note that the secondary 
voids in triclinic WO3 should also be considered as 
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possible cationic sites, in particular since (R,,o~d), at 
1-35 A, is larger than (Rvoid) for the primary voids, 
showing the reverse trend compared to Rvo~O values. 
Consequently, Dy 2' and La 3 + ions may be preferen- 
tially stabilized in the triclinic phase. 

The above identification of doped compositions 
most likely to adopt one polymorph or another is 
purely predictive. Clearly, it is desirable to carry out 
experimental work, to determine the soundness of 
the methodology. It would also be instructive to 
ascertain the degree of doping required to produce 
phase-stabilization effects: whether, for example, this 
lies in the parts per million or in the atom percent 
range. In carrying out these experiments, it would 
also be necessary to monitor the possible introduc- 
tion of secondary phases, through doping. This 
would be contrary to the predictions here, which 
anticipate that the dopant ions will be in solid solu- 
tion within the parent phase. 

Relationships between chemical composition and crys- 
tal structure 

An overall strategy for analysing relationships 
between chemical composition and crystal structure 
in ceramics has been described previously (Thomas, 
1991). The contribution of the void methodology 
should be seen as an addendum to this overall 
strategy, in that it is incomplete by itself. 

The strategy relies on the calculation of polyhedral 
volumes, and ratios between them, as a means of 
characterizing the structures of ternary (Xp YqO,) and 
quaternary (XpYqZrOs) oxides. The identification of 
an unknown composition which is likely to crystal- 
lize in a structure identical to that of a known 
composition is based on two premises: (i) the 
unknown composition must consist of ions with 
identical ratios of their coordination polyhedral 
volumes; (ii) the overall constraint of electro- 
neutrality must be obeyed. Clearly, binary oxides, 
XpOq, are not susceptible to this treatment, since 
ratios of polyhedral volumes between different metal 
ions cannot be defined. 

As discussed previously (Thornas, 1991), the elec- 
troneutrality condition for a ternary composition 
such as XY204,  i.e. vx+ 2vr = 8, is satisfied by 
(vx, vr) = (0,4). Thus this composition can be 
regarded as a derivative of a binary oxide, I"204, or, 
more correctly, YO2. The void methodology permits 
this structural relationship to be examined from the 
other perspective: i.e. given the known structure of a 
binary oxide, it may be possible to predict the exist- 
ence of a ternary oxide, which is formed from the 
binary oxide by occupation of some or all of its void 
sites. Thus one may look for parent-derivative rela- 
tionships between binary and ternary oxides (or, 
indeed, between ternary and quaternary oxides). 

This possibility can be studied briefly by con- 
sidering the three binary-oxide systems under exam- 
ination here, TiO2, ZrO2 and WO3. The ratio 
Vv,,~d/V~on in Table 3 is a helpful pointer towards 
identifying possible derivatives of binary structures. 
In the case of the WO3 polymorphs, which are 
topologically identical, values of the ratio equal to, 
or nearly equal to 5 point to the relationship between 
the WO3 and perovskite structures, AB03. In the 
latter, the ratio of A to B polyhedral volumes, VA/V8 
is equal to, or nearly equal to 5 (Thomas, 1989). 
Thus a perovskite, for example NaNbO~, is formed 
from the WO3 structure by substituting Nb s+ for 
W 6~, and substituting an N a '  ion in each of its 
12-fold coordinated voids. Note also that NaNbO3 is 
stabilized in a sequence of phases similar to that of 
WO3 as the temperature is varied. VN,/VNb is equal 
to 5 only in the cubic paraelectric phase, which is 
stabilized at 923 K, falling to 4.737 in the room- 
temperature orthorhombic phase (Thomas, 1989). 

TiO2 and ZrO2 can also be regarded as parents of 
possible ternary metal oxides. Tetragonal and cubic 
ZrO2, with a Vvoid/Vzr ratio of 1.0000, are clearly 
able to give derivatives in which the ion filling the 
voids is identical in size to that replacing the Z r  4~ 

ion. It is also possible to conceive of derived binary 
oxides, in which the ions entering the Z r  4~ and void 
sites are identical. 

The search for structures derived from binary 
oxides with known Vvo~d/V~on ratios may be systema- 
tized by employing a computerized search/match 
procedure similar to one proposed earlier (Thomas, 
1991). In a binary oxide, the polyhedral volume of a 
void may be expressed as  Vvoio = Nvoid(Rvoid) 3, with 
the polyhedral volume of the metal ions expressed as 
V~o, = Nm,(&on) 3. Here (&on) is the mean distance 
from the centre of the ion to the surfaces of the 
coordinating ions. Thus the empirical parameters, 
Nvoio and N~o. are readily determined for any binary 
metal oxide structure. Since the ionic radii of 
Shannon (1976) are available for most ions, values of 
Vv,,~o/V~o~ may be calculated for virtually all the 
possible pairs of ions, in which one ion occupies all 
the primary void sites, and the other replaces the 
metal ion of the binary oxide. (Rvo~d) corresponds to 
the ionic radius of the ion entering the void, and 
(&o,) to the radius of the ion substituting the metal 
ion of the binary oxide. Electroneutrality must, of 
course, be maintaind, and a minimum allowed O---O 
distance of 2.5 A is applied. Suitable pairs of ions are 
those which give rise to a V,~oid/V~o,, ratio closest to 
that of the parent binary oxide. Table 5 summarizes 
the results of applying this procedure to TiO2 and 
ZrO2 polymorphs, with a maximum allowed devia- 
tion of 2% from the ideal VvoiJ Vion ratio. 

A word of caution is appropriate at this juncture, 
since it is impossible to predict whether a particular 
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Table 5. Results of the search~match procedure 
applied to binary oxides TiO2 and ZrO2 

Number of hits Examples of derived 
Binary oxide for 2% tolerance ternary oxides 

TiO~ Anatase 15 Na2CoO.,,* K2HgO2, Na2ZnO, 
Brookite 53 CuGdO~, TbLiO,, SrnCaO2 
Rutile 17 Li2MgO2, Rb2BaO2, K2SmO2 
TiO,(II) 89 SrPbO2, NaBiO,. NaCeO_, 

ZrO, Monoclinic 56 NaGdO~, NaCfO,, BaSmO., 
Tetragonal 59 PdLiO,, SbLiO,, NaBiO2 
Cubic 59 PdLiO2, SbLiO,, NaBiO, 

* Co 2' ion is in high-spin state. 

composition will actually adopt the structure derived 
from the binary oxide. One example in Table 5, 
NaBiO2, can be derived either from the TiO2(II) 
structure, or from the tetragonal/cubic ZrO2 struc- 
ture, and the two structures are quite different. Thus 
the technique is best regarded as as computational 
tool, to be used in conjunction with experimental 
structural work. It is also a helpful approach in 
developing logical connections between observed 
crystal structures. 
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Abstract 

The relationship between the layer and framework 
pictures of layered AB03 ceramics is examined, and 
expressed quantitatively. This permits a calculation 
of the volumes of cationic coordination polyhedra in 
terms of AO3 layer separations and distances 
between oxygen ions within the layers. Thus the 
observed stacking sequences (combinations of cubic- 
and hexagonal-type stacking) can be quantitatively 
related to the sizes of the cations, and hence chemical 
composition. Several AB03 systems are examined, 
with Ba 2~ and Sr 2+ as A ions. In the (Ba,Sr)RuO3 

0108-7681/91/050597-12503.00 

system, the occurrence of 9L, 4L and perovskite 
phases is rationalized in terms of { VA)/(VB) polyhe- 
dral volume ratios, and the solubility of different B 
ions in the 9L BaRuO3 structure is discussed. 
Considerations of ionic size are generally adequate to 
understand the structures obtained, except in 
compounds with the hexagonal barium titanate 
structure, where metal-metal bonding occurs. The 
influence of temperature and pressure on stacking 
sequence is considered, by examining BaMnO3_x 
and Ba~_ySr~.MnO3_x compositions. A rationaliza- 
tion in terms of (VA)/(VB) ratios is again found to be 
appropriate. Whereas the layer picture breaks down 
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